home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Software of the Month Club 2000 October
/
Software of the Month - Ultimate Collection Shareware 277.iso
/
pc
/
PROGRAMS
/
UTILITY
/
WINLINUX
/
DATA1.CAB
/
programs_-_include
/
ASM-ARM
/
PROC-ARM.{21
/
PGTABLE.H
< prev
next >
Wrap
C/C++ Source or Header
|
1999-09-17
|
18KB
|
706 lines
/*
* linux/include/asm-arm/proc-armv/pgtable.h
*
* Copyright (C) 1995, 1996, 1997 Russell King
*
* 12-01-1997 RMK Altered flushing routines to use function pointers
* now possible to combine ARM6, ARM7 and StrongARM versions.
*/
#ifndef __ASM_PROC_PGTABLE_H
#define __ASM_PROC_PGTABLE_H
#include <asm/arch/mmu.h>
#include <asm/arch/processor.h> /* For TASK_SIZE */
#define LIBRARY_TEXT_START 0x0c000000
/*
* Cache flushing...
*/
#define flush_cache_all() \
processor.u.armv3v4._flush_cache_all()
#define flush_cache_mm(_mm) \
do { \
if ((_mm) == current->mm) \
processor.u.armv3v4._flush_cache_all(); \
} while (0)
#define flush_cache_range(_mm,_start,_end) \
do { \
if ((_mm) == current->mm) \
processor.u.armv3v4._flush_cache_area \
((_start), (_end), 1); \
} while (0)
#define flush_cache_page(_vma,_vmaddr) \
do { \
if ((_vma)->vm_mm == current->mm) \
processor.u.armv3v4._flush_cache_area \
((_vmaddr), (_vmaddr) + PAGE_SIZE, \
((_vma)->vm_flags & VM_EXEC) ? 1 : 0); \
} while (0)
#define flush_icache_range(_start,_end) \
processor.u.armv3v4._flush_icache_area((_start), (_end))
/*
* We don't have a MEMC chip...
*/
#define update_memc_all() do { } while (0)
#define update_memc_task(tsk) do { } while (0)
#define update_memc_mm(mm) do { } while (0)
#define update_memc_addr(mm,addr,pte) do { } while (0)
/*
* This flushes back any buffered write data. We have to clean and flush the entries
* in the cache for this page. Is it necessary to invalidate the I-cache?
*/
#define flush_page_to_ram(_page) \
processor.u.armv3v4._flush_ram_page ((_page) & PAGE_MASK);
/*
* Make the page uncacheable (must flush page beforehand).
*/
#define uncache_page(_page) \
processor.u.armv3v4._flush_ram_page ((_page) & PAGE_MASK);
/*
* TLB flushing:
*
* - flush_tlb() flushes the current mm struct TLBs
* - flush_tlb_all() flushes all processes TLBs
* - flush_tlb_mm(mm) flushes the specified mm context TLB's
* - flush_tlb_page(vma, vmaddr) flushes one page
* - flush_tlb_range(mm, start, end) flushes a range of pages
*
* GCC uses conditional instructions, and expects the assembler code to do so as well.
*
* We drain the write buffer in here to ensure that the page tables in ram
* are really up to date. It is more efficient to do this here...
*/
#define flush_tlb() flush_tlb_all()
#define flush_tlb_all() \
processor.u.armv3v4._flush_tlb_all()
#define flush_tlb_mm(_mm) \
do { \
if ((_mm) == current->mm) \
processor.u.armv3v4._flush_tlb_all(); \
} while (0)
#define flush_tlb_range(_mm,_start,_end) \
do { \
if ((_mm) == current->mm) \
processor.u.armv3v4._flush_tlb_area \
((_start), (_end), 1); \
} while (0)
#define flush_tlb_page(_vma,_vmaddr) \
do { \
if ((_vma)->vm_mm == current->mm) \
processor.u.armv3v4._flush_tlb_area \
((_vmaddr), (_vmaddr) + PAGE_SIZE, \
((_vma)->vm_flags & VM_EXEC) ? 1 : 0); \
} while (0)
/*
* Since the page tables are in cached memory, we need to flush the dirty
* data cached entries back before we flush the tlb... This is also useful
* to flush out the SWI instruction for signal handlers...
*/
#define __flush_entry_to_ram(entry) \
processor.u.armv3v4._flush_cache_entry((unsigned long)(entry))
#define __flush_pte_to_ram(entry) \
processor.u.armv3v4._flush_cache_pte((unsigned long)(entry))
/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT 20
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT 20
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* entries per page directory level: the sa110 is two-level, so
* we don't really have any PMD directory physically.
*/
#define PTRS_PER_PTE 256
#define PTRS_PER_PMD 1
#define PTRS_PER_PGD 4096
#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
/* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 8MB value just means that there will be a 8MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*/
#define VMALLOC_OFFSET (8*1024*1024)
#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END (PAGE_OFFSET + 0x10000000)
/* PMD types (actually level 1 descriptor) */
#define PMD_TYPE_MASK 0x0003
#define PMD_TYPE_FAULT 0x0000
#define PMD_TYPE_TABLE 0x0001
#define PMD_TYPE_SECT 0x0002
#define PMD_UPDATABLE 0x0010
#define PMD_SECT_CACHEABLE 0x0008
#define PMD_SECT_BUFFERABLE 0x0004
#define PMD_SECT_AP_WRITE 0x0400
#define PMD_SECT_AP_READ 0x0800
#define PMD_DOMAIN(x) ((x) << 5)
/* PTE types (actially level 2 descriptor) */
#define PTE_TYPE_MASK 0x0003
#define PTE_TYPE_FAULT 0x0000
#define PTE_TYPE_LARGE 0x0001
#define PTE_TYPE_SMALL 0x0002
#define PTE_AP_READ 0x0aa0
#define PTE_AP_WRITE 0x0550
#define PTE_CACHEABLE 0x0008
#define PTE_BUFFERABLE 0x0004
/* Domains */
#define DOMAIN_USER 0
#define DOMAIN_KERNEL 1
#define DOMAIN_TABLE 1
#define DOMAIN_IO 2
#define _PAGE_CHG_MASK (0xfffff00c | PTE_TYPE_MASK)
/*
* We define the bits in the page tables as follows:
* PTE_BUFFERABLE page is dirty
* PTE_AP_WRITE page is writable
* PTE_AP_READ page is a young (unsetting this causes faults for any access)
* PTE_CACHEABLE page is readable
*
* A page will not be made writable without the dirty bit set.
* It is not legal to have a writable non-dirty page though (it breaks).
*
* A readable page is marked as being cacheable.
* Youngness is indicated by hardware read. If the page is old,
* then we will fault and make the page young again.
*/
#define _PTE_YOUNG PTE_AP_READ
#define _PTE_DIRTY PTE_BUFFERABLE
#define _PTE_READ PTE_CACHEABLE
#define _PTE_WRITE PTE_AP_WRITE
#define PAGE_NONE __pgprot(PTE_TYPE_SMALL | _PTE_YOUNG)
#define PAGE_SHARED __pgprot(PTE_TYPE_SMALL | _PTE_YOUNG | _PTE_READ | _PTE_WRITE)
#define PAGE_COPY __pgprot(PTE_TYPE_SMALL | _PTE_YOUNG | _PTE_READ)
#define PAGE_READONLY __pgprot(PTE_TYPE_SMALL | _PTE_YOUNG | _PTE_READ)
#define PAGE_KERNEL __pgprot(PTE_TYPE_SMALL | _PTE_READ | _PTE_DIRTY | _PTE_WRITE)
#define _PAGE_USER_TABLE (PMD_TYPE_TABLE | PMD_DOMAIN(DOMAIN_USER))
#define _PAGE_KERNEL_TABLE (PMD_TYPE_TABLE | PMD_DOMAIN(DOMAIN_KERNEL))
/*
* The arm can't do page protection for execute, and considers that the same are read.
* Also, write permissions imply read permissions. This is the closest we can get..
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
#undef TEST_VERIFY_AREA
/*
* BAD_PAGETABLE is used when we need a bogus page-table, while
* BAD_PAGE is used for a bogus page.
*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);
extern unsigned long *empty_zero_page;
#define BAD_PAGETABLE __bad_pagetable()
#define BAD_PAGE __bad_page()
#define ZERO_PAGE ((unsigned long) empty_zero_page)
/* number of bits that fit into a memory pointer */
#define BYTES_PER_PTR (sizeof(unsigned long))
#define BITS_PER_PTR (8*BYTES_PER_PTR)
/* to align the pointer to a pointer address */
#define PTR_MASK (~(sizeof(void*)-1))
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
#define SIZEOF_PTR_LOG2 2
/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
/* to set the page-dir */
#define SET_PAGE_DIR(tsk,pgdir) \
do { \
tsk->tss.memmap = __virt_to_phys((unsigned long)pgdir); \
if ((tsk) == current) \
__asm__ __volatile__( \
"mcr%? p15, 0, %0, c2, c0, 0\n" \
: : "r" (tsk->tss.memmap)); \
} while (0)
extern __inline__ int pte_none(pte_t pte)
{
return !pte_val(pte);
}
#define pte_clear(ptep) set_pte(ptep, __pte(0))
extern __inline__ int pte_present(pte_t pte)
{
#if 0
/* This is what it really does, the else
part is just to make it easier for the compiler */
switch (pte_val(pte) & PTE_TYPE_MASK) {
case PTE_TYPE_LARGE:
case PTE_TYPE_SMALL:
return 1;
default:
return 0;
}
#else
return ((pte_val(pte) + 1) & 2);
#endif
}
extern __inline__ int pmd_none(pmd_t pmd)
{
return !pmd_val(pmd);
}
#define pmd_clear(pmdp) set_pmd(pmdp, __pmd(0))
extern __inline__ int pmd_bad(pmd_t pmd)
{
#if 0
/* This is what it really does, the else
part is just to make it easier for the compiler */
switch (pmd_val(pmd) & PMD_TYPE_MASK) {
case PMD_TYPE_FAULT:
case PMD_TYPE_TABLE:
return 0;
default:
return 1;
}
#else
return pmd_val(pmd) & 2;
#endif
}
extern __inline__ int pmd_present(pmd_t pmd)
{
#if 0
/* This is what it really does, the else
part is just to make it easier for the compiler */
switch (pmd_val(pmd) & PMD_TYPE_MASK) {
case PMD_TYPE_TABLE:
return 1;
default:
return 0;
}
#else
return ((pmd_val(pmd) + 1) & 2);
#endif
}
/*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*/
#define pgd_none(pgd) (0)
#define pgd_bad(pgd) (0)
#define pgd_present(pgd) (1)
#define pgd_clear(pgdp)
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
#define pte_read(pte) (1)
#define pte_exec(pte) (1)
extern __inline__ int pte_write(pte_t pte)
{
return pte_val(pte) & _PTE_WRITE;
}
extern __inline__ int pte_dirty(pte_t pte)
{
return pte_val(pte) & _PTE_DIRTY;
}
extern __inline__ int pte_young(pte_t pte)
{
return pte_val(pte) & _PTE_YOUNG;
}
extern __inline__ pte_t pte_wrprotect(pte_t pte)
{
pte_val(pte) &= ~_PTE_WRITE;
return pte;
}
extern __inline__ pte_t pte_nocache(pte_t pte)
{
pte_val(pte) &= ~PTE_CACHEABLE;
return pte;
}
extern __inline__ pte_t pte_mkclean(pte_t pte)
{
pte_val(pte) &= ~_PTE_DIRTY;
return pte;
}
extern __inline__ pte_t pte_mkold(pte_t pte)
{
pte_val(pte) &= ~_PTE_YOUNG;
return pte;
}
extern __inline__ pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) |= _PTE_WRITE;
return pte;
}
extern __inline__ pte_t pte_mkdirty(pte_t pte)
{
pte_val(pte) |= _PTE_DIRTY;
return pte;
}
extern __inline__ pte_t pte_mkyoung(pte_t pte)
{
pte_val(pte) |= _PTE_YOUNG;
return pte;
}
/*
* The following are unable to be implemented on this MMU
*/
#if 0
extern __inline__ pte_t pte_rdprotect(pte_t pte)
{
pte_val(pte) &= ~(PTE_CACHEABLE|PTE_AP_READ);
return pte;
}
extern __inline__ pte_t pte_exprotect(pte_t pte)
{
pte_val(pte) &= ~(PTE_CACHEABLE|PTE_AP_READ);
return pte;
}
extern __inline__ pte_t pte_mkread(pte_t pte)
{
pte_val(pte) |= PTE_CACHEABLE;
return pte;
}
extern __inline__ pte_t pte_mkexec(pte_t pte)
{
pte_val(pte) |= PTE_CACHEABLE;
return pte;
}
#endif
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
extern __inline__ pte_t mk_pte(unsigned long page, pgprot_t pgprot)
{
pte_t pte;
pte_val(pte) = __virt_to_phys(page) | pgprot_val(pgprot);
return pte;
}
/* This takes a physical page address that is used by the remapping functions */
extern __inline__ pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
{
pte_t pte;
pte_val(pte) = physpage + pgprot_val(pgprot);
return pte;
}
extern __inline__ pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
return pte;
}
extern __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
{
*pteptr = pteval;
__flush_pte_to_ram(pteptr);
}
extern __inline__ unsigned long pte_page(pte_t pte)
{
return __phys_to_virt(pte_val(pte) & PAGE_MASK);
}
extern __inline__ pmd_t mk_user_pmd(pte_t *ptep)
{
pmd_t pmd;
pmd_val(pmd) = __virt_to_phys((unsigned long)ptep) | _PAGE_USER_TABLE;
return pmd;
}
extern __inline__ pmd_t mk_kernel_pmd(pte_t *ptep)
{
pmd_t pmd;
pmd_val(pmd) = __virt_to_phys((unsigned long)ptep) | _PAGE_KERNEL_TABLE;
return pmd;
}
#if 1
#define set_pmd(pmdp,pmd) processor.u.armv3v4._set_pmd(pmdp,pmd)
#else
extern __inline__ void set_pmd(pmd_t *pmdp, pmd_t pmd)
{
*pmdp = pmd;
__flush_pte_to_ram(pmdp);
}
#endif
extern __inline__ unsigned long pmd_page(pmd_t pmd)
{
return __phys_to_virt(pmd_val(pmd) & 0xfffffc00);
}
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* to find an entry in a page-table-directory */
extern __inline__ pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
{
return mm->pgd + (address >> PGDIR_SHIFT);
}
/* Find an entry in the second-level page table.. */
#define pmd_offset(dir, address) ((pmd_t *)(dir))
/* Find an entry in the third-level page table.. */
extern __inline__ pte_t * pte_offset(pmd_t * dir, unsigned long address)
{
return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}
extern unsigned long get_small_page(int priority);
extern void free_small_page(unsigned long page);
/*
* Allocate and free page tables. The xxx_kernel() versions are
* used to allocate a kernel page table - this turns on ASN bits
* if any.
*/
#ifndef __SMP__
extern struct pgtable_cache_struct {
unsigned long *pgd_cache;
unsigned long *pte_cache;
unsigned long pgtable_cache_sz;
} quicklists;
#define pgd_quicklist (quicklists.pgd_cache)
#define pmd_quicklist ((unsigned long *)0)
#define pte_quicklist (quicklists.pte_cache)
#define pgtable_cache_size (quicklists.pgtable_cache_sz)
#else
#error Pgtable caches have to be per-CPU, so that no locking is needed.
#endif
extern pgd_t *get_pgd_slow(void);
extern __inline__ pgd_t *get_pgd_fast(void)
{
unsigned long *ret;
if((ret = pgd_quicklist) != NULL) {
pgd_quicklist = (unsigned long *)(*ret);
ret[0] = ret[1];
pgtable_cache_size--;
} else
ret = (unsigned long *)get_pgd_slow();
return (pgd_t *)ret;
}
extern __inline__ void free_pgd_fast(pgd_t *pgd)
{
*(unsigned long *)pgd = (unsigned long) pgd_quicklist;
pgd_quicklist = (unsigned long *) pgd;
pgtable_cache_size++;
}
extern __inline__ void free_pgd_slow(pgd_t *pgd)
{
free_pages((unsigned long) pgd, 2);
}
extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted);
extern pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long address_preadjusted);
extern __inline__ pte_t *get_pte_fast(void)
{
unsigned long *ret;
if((ret = (unsigned long *)pte_quicklist) != NULL) {
pte_quicklist = (unsigned long *)(*ret);
ret[0] = ret[1];
pgtable_cache_size--;
}
return (pte_t *)ret;
}
extern __inline__ void free_pte_fast(pte_t *pte)
{
*(unsigned long *)pte = (unsigned long) pte_quicklist;
pte_quicklist = (unsigned long *) pte;
pgtable_cache_size++;
}
extern __inline__ void free_pte_slow(pte_t *pte)
{
free_small_page((unsigned long)pte);
}
/* We don't use pmd cache, so this is a dummy routine */
extern __inline__ pmd_t *get_pmd_fast(void)
{
return (pmd_t *)0;
}
extern __inline__ void free_pmd_fast(pmd_t *pmd)
{
}
extern __inline__ void free_pmd_slow(pmd_t *pmd)
{
}
extern void __bad_pmd(pmd_t *pmd);
extern void __bad_pmd_kernel(pmd_t *pmd);
#define pte_free_kernel(pte) free_pte_fast(pte)
#define pte_free(pte) free_pte_fast(pte)
#define pgd_free(pgd) free_pgd_fast(pgd)
#define pgd_alloc() get_pgd_fast()
extern __inline__ pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
if (pmd_none(*pmd)) {
pte_t *page = (pte_t *) get_pte_fast();
if (!page)
return get_pte_kernel_slow(pmd, address);
set_pmd(pmd, mk_kernel_pmd(page));
return page + address;
}
if (pmd_bad(*pmd)) {
__bad_pmd_kernel(pmd);
return NULL;
}
return (pte_t *) pmd_page(*pmd) + address;
}
extern __inline__ pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
if (pmd_none(*pmd)) {
pte_t *page = (pte_t *) get_pte_fast();
if (!page)
return get_pte_slow(pmd, address);
set_pmd(pmd, mk_user_pmd(page));
return page + address;
}
if (pmd_bad(*pmd)) {
__bad_pmd(pmd);
return NULL;
}
return (pte_t *) pmd_page(*pmd) + address;
}
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
extern __inline__ void pmd_free(pmd_t *pmd)
{
}
extern __inline__ pmd_t *pmd_alloc(pgd_t *pgd, unsigned long address)
{
return (pmd_t *) pgd;
}
#define pmd_free_kernel pmd_free
#define pmd_alloc_kernel pmd_alloc
extern __inline__ void set_pgdir(unsigned long address, pgd_t entry)
{
struct task_struct * p;
pgd_t *pgd;
read_lock(&tasklist_lock);
for_each_task(p) {
if (!p->mm)
continue;
*pgd_offset(p->mm,address) = entry;
}
read_unlock(&tasklist_lock);
for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
pgd[address >> PGDIR_SHIFT] = entry;
}
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
/*
* The sa110 doesn't have any external MMU info: the kernel page
* tables contain all the necessary information.
*/
extern __inline__ void update_mmu_cache(struct vm_area_struct * vma,
unsigned long address, pte_t pte)
{
}
#define SWP_TYPE(entry) (((entry) >> 2) & 0x7f)
#define SWP_OFFSET(entry) ((entry) >> 9)
#define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << 9))
#endif /* __ASM_PROC_PAGE_H */